FURTHER MATHEMATICS Past Questions And Answers
Which of the following is a singular matrix?
- A. \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)
- B. \(\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}\)
- C. \(\begin{pmatrix} 3 & 8 \\ 5 & 16 \end{pmatrix}\)
- D. \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)
Consider the statements:
p : Musa is short
q : Musa is brilliant
Which of the following represents the statement "Musa is short but not brilliant"?
- A. \(p \vee q\)
- B. \(p \vee \sim q\)
- C. \(p \wedge \sim q\)
- D. \(p \wedge q\)
If \(\alpha\) and \(\beta\) are the roots of the equation \(2x^{2} - 6x + 5 = 0\), evaluate \(\frac{\beta}{\alpha} + \frac{\alpha}{\beta}\).
- A. \(\frac{24}{5}\)
- B. \(\frac{8}{5}\)
- C. \(\frac{5}{8}\)
- D. \(\frac{5}{24}\)
Consider the following statement:
x: All wrestlers are strong
y: Some wresters are not weightlifters.
Which of the following is a valid conclusion?
- A. All strong wrestlers are weightlifters
- B. Some strong wrestlers are not weightlifters
- C. Some weak wrestlers are weightlifters
- D. All weightlifters are wrestlers
Find the unit vector in the direction of (-5i + 12j).
- A. \(\frac{1}{13}(-5i - 12j)\)
- B. \(\frac{1}{13}(5i - 12j)\)
- C. \(\frac{1}{13}(-5i + 12j)\)
- D. \(\frac{1}{13}(5i + 12j)\)
\(P = {1, 3, 5, 7, 9}, Q = {2, 4, 6, 8, 10, 12}, R = {2, 3, 5, 7, 11}\) are subsets of \(U = {1, 2, 3, ... , 12}\). Which of the following statements is true?
- A. \(Q \cap R = \varnothing\)
- B. \(R \subset P\)
- C. \((R \cap P) \subset (R \cap U)\)
- D. \(n(P' \cap R) = 2\)
(a). \(\frac{T}{\sin 90^o}\) = \(\frac{120}{sin 135^o}\) and found T = 169.71N
(b) \(\frac{R}{\sin 135^o}\) = \(\frac{120}{\sin 135^o}\)
R = 120N
Given \(\sin \theta = \frac{\sqrt{3}}{2}, 0° \leq \theta \leq 90°\), find \(\tan 2\theta\) in surd form.
- A. \(- \sqrt{3}\)
- B. \(-\frac{\sqrt{3}}{2}\)
- C. \(\frac{\sqrt{3}}{2}\)
- D. \(\sqrt{3}\)
If \(f(x) = 3x^{3} + 8x^{2} + 6x + k\) and \(f(2) = 1\), find the value of k.
- A. -67
- B. -61
- C. 61
- D. 67
Given that \(P = \begin{pmatrix} y - 2 & y - 1 \\ y - 4 & y + 2 \end{pmatrix}\) and |P| = -23, find the value of y.
- A. -4
- B. -3
- C. -1
- D. 2