Waec 2011 Mathematics Past Questions And Answers

Note: You Can Select Post UTME Schools Name Below The Exam Year.
1

John pours 96 litres of red oil into a rectangular container with length 220cm and breadth 40cm. Calculate, correct to the nearest cm, the height of the oil in the container

  • A. 11cm
  • B. 18cm
  • C. 21cm
  • D. 34cm
View or Post an Explanation 27225 (0)WAEC 2011 OBJ
2

(a) Simplify : \(\frac{\frac{1}{2} of \frac{1}{4} \div \frac{1}{3}}{\frac{1}{6} - \frac{3}{4} + \frac{1}{2}}\).

(b) Given that \(\sqrt{x} = 10^{\bar{1}.6741}\), without using calculators, find the value of x.

View or Post an Explanation 27878 (0)WAEC 2011 THEORY
3

In a quiz competition, a student answers n questions correctly and was given D(n + 50) for each question correctly answered. If he gets D600.00 altogether, how many questions did he answer correctly?

  • A. 18
  • B. 15
  • C. 12
  • D. 10
View or Post an Explanation 27226 (0)WAEC 2011 OBJ
4

Solve \(9^{2x + 1} = 81^{3x + 2}\)

  • A. \(\frac{-3}{4}\)
  • B. \(\frac{-2}{3}\)
  • C. \(\frac{4}{5}\)
  • D. \(\frac{3}{2}\)
View or Post an Explanation 44336 (0)WAEC 2011 OBJ
5

Find the size of the angle marked x in the diagram.

Find the size of the angle marked x in the diagram.
  • A. 108°
  • B. 112°
  • C. 128°
  • D. 142°
View or Post an Explanation 27231 (0)WAEC 2011 OBJ
6

One of the factors of (mn - nq - n2 + mq) is (m - n). The other factor is?

  • A. (n - q)
  • B. (q - n)
  • C. (n + q)
  • D. (q - m)
View or Post an Explanation 27198 (0)WAEC 2011 OBJ
7

If 27x = 9y. Find the value of \(\frac{x}{y}\)

  • A. \(\frac{1}{3}\)
  • B. \(\frac{2}{3}\)
  • C. 1\(\frac{1}{2}\)
  • D. 3
View or Post an Explanation 27227 (0)WAEC 2011 OBJ
8

Find the equation of a circle with centre (-3, -8) and radius \(4\sqrt{6}\).

  • A. \(x^{2} - y^{2} - 6x + 16y + 23 = 0\)
  • B. \(x^{2} + y^{2} + 6x + 16y - 23 = 0\)
  • C. \(x^{2} + y^{2} + 6x - 16y + 23 = 0\)
  • D. \(x^{2} + y^{2} - 6x + 16y + 23 = 0\)
View or Post an Explanation 44342 (0)WAEC 2011 OBJ
9

A particle starts from rest and moves in a straight line such that its velocity, v, at time t seconds is given by \(v = (3t^{2} - 2t) ms^{-1}\). Determine the acceleration when t = 2 secs.

  • A. \(4 ms^{-2}\)
  • B. \(6 ms^{-2}\)
  • C. \(8 ms^{-2}\)
  • D. \(10 ms^{-2}\)
View or Post an Explanation 44356 (0)WAEC 2011 OBJ
10

(a) Find, from first principles, the derivative of \(f(x) = (2x + 3)^{2}\).

(b) Evaluate : \(\int_{1} ^{2} \frac{(x + 1)(x^{2} - 2x + 2)}{x^{2}} \mathrm {d} x\)

View or Post an Explanation 44311 (0)WAEC 2011 THEORY