(a) Using the substitution (u = 5 - x^{2}), evaluate (int_{1}^{2} frac{x}{sqrt{5 - x^{2}}} mathrm...

FURTHER MATHEMATICSWAEC 2006

(a) Using the substitution \(u = 5 - x^{2}\), evaluate \(\int_{1}^{2} \frac{x}{\sqrt{5 - x^{2}}} \mathrm {d} x\).

(b) If \(y = px^{2} + qx; \frac{\mathrm d y}{\mathrm d x} = 6x + 7\) and \(\frac{\mathrm d^{2} y}{\mathrm d x^{2}} = 6\), find the values of p and q.

Explanation

(a) \(u = 5 - x^{2}\)

= \(\int_{1}^{2} \frac{x}{\sqrt{u}} dx\)

\(\frac{\mathrm d u}{\mathrm d x} = -2x\)

\(\mathrm {d} x = \frac{\mathrm d u}{-2x}\)

\(\implies \int_{1}^{2} \frac{x}{\sqrt{u}} \frac{\mathrm d u}{-2x}\)

= \(-\frac{1}{2} \int_{1}^{2} \frac{1}{\sqrt{u}} \mathrm {d} u\)

= \(-\frac{1}{2} \int_{1}^{2} u^{-\frac{1}{2}} \mathrm {d} u\)

= \(-\frac{1}{2} [2u^{1}{2}]|_{1}^{2}\)

= \(-\frac{1}{2} [2\sqrt{5 - x^{2}}]|_{1}^{2}\)

= \(-\frac{1}{2} [2 - 4]\)

= 1.

(b)\(y = px^{2} + qx\)

\(\frac{\mathrm d y}{\mathrm d x} = 2px + q = 6x + 7\)

\(\implies 2p = 6; p = 3\)

\(q = 7\)

Back to WAEC 2006 QuestionsPrevious QuestionNext Question


Post an Explanation Or Report an Error

If you see any wrong question or answer, please leave a comment below and we'll take a look. If you doubt why the selected answer is correct or need additional more details? Please drop a comment or Contact us directly.

Your email address will not be published. Required fields are marked *

Don't want to keep filling in name and email whenever you make a contribution? Register or login to make contributing easier.